Step of Proof: symmetrized_preorder
12,41
postcript
pdf
Inference at
*
3
2
I
of proof for Lemma
symmetrized
preorder
:
1.
T
: Type
2.
R
:
T
T
3. Refl(
T
;
x
,
y
.
R
(
x
,
y
))
4.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
5.
a
:
T
6.
b
:
T
7.
c
:
T
8.
R
(
a
,
b
)
9.
R
(
b
,
a
)
10.
R
(
b
,
c
)
11.
R
(
c
,
b
)
R
(
c
,
a
)
latex
by ((FHyp 4 [9;11])
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
origin